AREA OF A SQUARE

1. Find the area of a square whose width is 2.2 in .
$2.2 \times 2.2=4.84 \mathrm{in}^{2}$
2. Find the area of a square whose width is 3.1 in.
$3.1 \times 3.1=9.61 \mathrm{in}^{2}$
3. Find the area of a square whose width is 8 in .
$8 \times 8=64 i n^{2}$
4. Find the area of a square whose width is 0.4 in .
$0.4 \times 0.4=0.16 \mathrm{in}^{2}$
5. Find the area of a square whose width is 7.4 in .
$7.4 \times 7.4=54.76 \mathrm{in}^{2}$

AREA OF A RECTANGLE

1. Find the area of a rectangle whose length is 2.2 in and width is 0.3 in .
$2.2 \times 0.3=0.66 \mathrm{in}^{2}$
2. Find the area of a rectangle whose length is 6 in and width is 0.6 in .
$6 \times 0.6=3.6 \mathrm{in}^{2}$
3. Find the area of a rectangle whose length is 3.1 in and width is 3.2 in .
$3.1 \times 3.2=9.92 \mathrm{in}^{2}$
*4. Find the LENGTH of a rectangle whose WIDTH is 7 in and AREA is $56 \mathrm{in}^{2}$.
$7 \times L=56 \mathrm{in}^{2}$
$7 l=56$
$\frac{7 l}{7}=\frac{56}{7}$
$l=8$ in
*5. Find the WIDTH of a rectangle whose LENGTH is 0.3 in and AREA is $2.73 \mathrm{in}^{2}$.
$0.3 \times \mathrm{W}=2.73 \mathrm{in}^{2}$
$0.3 w=2.73$
$\frac{0.3 w}{0.3}=\frac{2.73}{0.3}$
$w=9.1$ in

AREA OF A TRIANGLE

1. Find the area of a triangle whose height is 66 in and base is 0.2 in .

$$
\begin{aligned}
A & =\frac{1}{2} b h \\
A & =\frac{1}{2}(0.2)(66) \\
A & =(0.1)(66) \\
A & =6.6 i n^{2}
\end{aligned}
$$

2. Find the area of a triangle whose height is 32 in and base is 3.2 in .

$$
\begin{aligned}
A & =\frac{1}{2} b h \\
A & =\frac{1}{2}(3.2)(32) \\
A & =(1.6)(32) \\
A & =51.2 i^{2}
\end{aligned}
$$

3. Find the area of a triangle whose height is 18 in and base is 4 in .

$$
\begin{aligned}
& A=\frac{1}{2} b h \\
& A=\frac{1}{2}(4)(18) \\
& A=(2)(18) \\
& A=36 i n^{2}
\end{aligned}
$$

*4. Find the BASE of a triangle whose height is 8 in and area is $8 \mathrm{in}^{2}$.

$$
\begin{aligned}
& A=\frac{1}{2} b h \\
& 8=\frac{1}{2} b(8) \\
& 8=4 b \\
& \frac{8}{4}=\frac{4 b}{4} \\
& 2 i n=b
\end{aligned}
$$

*5. Find the HEIGHT of a triangle whose BASE is 12 in and area is $0.3 \mathrm{in}^{2}$.

$$
\begin{aligned}
& A=\frac{1}{2} b h \\
& 0.3=\frac{1}{2}(12)(h) \\
& 0.3=6 h \\
& \frac{0.3}{6}=\frac{6 h}{6} \\
& 0.05 \text { in }=b
\end{aligned}
$$

1. Find the area of a parallelogram whose height is 2.2 in and base is 6 in .
$2.2 \times 6=13.2 \mathrm{in}^{2}$
2. Find the area of a parallelogram whose height is 3 in and base is 1.7 in .
$3 \times 1.7=5.1 \mathrm{in}^{2}$
3. Find the area of a parallelogram whose height is 9 in and base is 8.8 in .
$9 \times 8.8=79.2 \mathrm{in}^{2}$
*4. Find the BASE of a parallelogram whose height is 6 in and area is $36 \mathrm{in}^{2}$.

$$
\begin{aligned}
& A=b h \\
& 36=b(6) \\
& \frac{36}{6}=\frac{b(6)}{6} \\
& 6 \text { in }=b
\end{aligned}
$$

*5. Find the HEIGHT of a parallelogram whose BASE is 7in and area is $4.2 \mathrm{in}^{2}$.
$A=b h$
$4.2=7 h$
$\frac{4.2}{7}=\frac{7 h}{7}$
0.6 in $=h$

1. Find the area of a trapezoid whose height is 2.2 in , base ${ }_{1}$ is 6 in and base $_{2}$ is 7 in .
$A=\frac{1}{2} h\left(b_{1}+b_{2}\right)$
$A=\frac{1}{2}(2.2)(6+7)$
$A=\frac{1}{2}(2.2)(13)$
$A=1.1(13)$
$A=14.3 i^{2}$
2. Find the area of a trapezoid whose height is 3 in , base ${ }_{1}$ is 17 in and base $_{2}$ is 3.2 in .
$A=\frac{1}{2} h\left(b_{1}+b_{2}\right)$
$A=\frac{1}{2}(3)(17+3.2)$
$A=\frac{1}{2}(3)(20.2)$
$A=3(10.1)$
$A=30.3 \mathrm{in}^{2}$
3. Find the area of a trapezoid whose height is 9 in , base ${ }_{1}$ is 8 in and base $_{2}$ is 0.8 in .
$A=\frac{1}{2} h\left(b_{1}+b_{2}\right)$
$A=\frac{1}{2}(9)(8+0.8)$
$A=\frac{1}{2}(9)(8.8)$
$A=(9)(4.4)$
$A=39.6 i^{2}$
*4. Find the HEIGHT of a trapezoid whose AREA is $90 \mathrm{in}^{2}$, base $_{1}$ is 35 in and base ${ }_{2}$ is 55 in .
$A=\frac{1}{2} h\left(b_{1}+b_{2}\right)$
$90=\frac{1}{2}(h)(35+55)$
$90=\frac{1}{2}(h)(90)$
$90=45 h$
$\frac{90}{45}=\frac{45 h}{45}$
$2 i n=h$
${ }^{*} 5$. Find the BASE_{1} of a trapezoid whose AREA is $50 \mathrm{in}^{2}$, height is 10 in and base ${ }_{2}$ is 8 in .

$$
\begin{aligned}
& A=\frac{1}{2} h\left(b_{1}+b_{2}\right) \\
& 50=\frac{1}{2}(10)\left(b_{1}+8\right) \\
& 50=5\left(b_{1}+8\right) \\
& \frac{50}{5}=\frac{5\left(b_{1}+8\right)}{5} \\
& 10=b_{1}+8 \\
& 10-8=b_{1}+8-8 \\
& 2=b_{1}
\end{aligned}
$$

